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1 Ideals of Localizations, Hilbert’s Basis Theorem, and UFDs

1.1 Ideals of localizations

Let R be a commutative ring, and let S be multiplicatively closed. We have a map S−1

sending ideals of R to ideals of S−1R. This is onto; that is, every ideal of S−1R arises this
way. Suppose S has no 0-divisors. Then

I 7→ S−1I ⇐⇒ I ∈ S−1I ⇐⇒ 1 = a/s, a ∈ I, s ∈ S ⇐⇒ I ∩ S = ∅.

Example 1.1. Let S = Sp for p prime. Then Sp ∩ I = ∅ ⇐⇒ I ⊆ p. This is because Rp
is ocal; that is, pRp is the unique maximal ideal.

Example 1.2. Let R = Z, and let p ∈ Z be prime. Then Z(p) = {a/b : a, b ∈ Z, p - b} ⊆ Q.
This has ideals pnZ(p), where n ≥ 0.

1.2 Hilbert’s basis theorem

Theorem 1.1 (Hilbert’s basis theorem). Let R be a commutative noetherian ring. Then
R[x] is noetherian.

Proof. Let I ⊆ R[x] be an ideal. Let L be the set of leading coefficients of polynomials in
I. We claim that L is an ideal of R. If a ∈ L, then a is the leading coefficient of f ∈ I.
Then for r ∈ R, then rf ∈ I has leading coefficient ra or ra = 0 ∈ L. If a, b ∈ L, then
f, g ∈ I with f(x) = axn + · · · and g(x) = bxm + · · · ; without loss of generality, n ≥ m, so
f + xn−mg = (a+ b)xn + · · · ∈ I. So a+ b ∈ L.

Since R is noetherian, L = (a1, . . . , ak), where ai ∈ R. Let fi ∈ I have leading
coefficients ai and degree ni, and let n = max{ni}. Let Lm ⊆ R be the ideal of leading
coefficients of polynomials of degree m and 0. Then Lm = (b1,m, . . . , b`m,m), since R
is noetherian. Let gi,m ∈ I have degree m and leading coefficient bi,m. Now let J =
(f1, . . . , fk, g1,1 · · · g`0,0, . . . , g1,n, . . . , g`n).

We claim that J = I. Let h ∈ I have leading coefficient c. Write c =
∑k

i=1 riai with

ri ∈ R. If m = deg(h) > n, then set h′ =
∑k

i=1 rix
m−nifi. This has degree m, leading
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coefficient c, so deg(h− h′) < m. Repeat, so we can assume deg(h) ≤ n. Then there exist
s1, . . . , s`m ∈ R such that c =

∑`m
i=1 sibi,m. So h −

∑`m
i=1 sigi,m has degree < m. Repeat

until we get degree zero.

Corollary 1.1. If R is noetherian, then R[x1, . . . , xn] is noetherian.

Definition 1.1. Let R be a ring. The center of R is Z(R) = {r ∈ R : rs = sr ∀s ∈ R}.

Definition 1.2. An algebra A over a commutative ring R is a ring A and a nonzero
homomorphism of rings R→ Z(A).

If R is a field, the homomorphism R→ Z(A) is injective, and A is an R-vector space.

Example 1.3. F [x1, . . . , xn] is an algebra over R.

Example 1.4. The quaternions, H = {a+ bi+ cj +dl : a, b, c, d ∈ R} is an R algebra. This
is not a C-algebra, but it contains C.

Example 1.5. A finitely generated commutative algebra over a field is isomorphic to
F [x1, . . . , xn]/I, where I is an ideal.

Corollary 1.2. Any finitely generated algebra over a field (which is noetherian) is noethe-
rian (as a ring).

F [(xi)i∈I ] is the free object on I in the category of commutative F -algebras.

1.3 Unique factorization domains

Example 1.6. Z[
√
−5] is not a UFD. 6 = 23 = (1 +

√
−5)(1 −

√
5). The only units in

Z[
√
−5] are ±1, so these factorizations really are different.

Definition 1.3. Let R be a UFD. An element d ∈ R is a gcd of a1, . . . , ar ∈ R if d | ai
for all i and if d′ | ai for all i, ten d′ | d.

Lemma 1.1. Let R be a UFD. Then a1, . . . , ar have a gcd.

Proof. Take π | a1, . . . , ar, and consider a1π
−1
1 , . . . , arπ

−1
1 . Repeat until there does not

exist a πk | aiπ−11 · · ·π
−1
k−1 for all i. Then π1 · · ·πk−1 is a gcd.

Lemma 1.2. Let R be a UFD. If a ∈ R \ {0}. Then (a) is maximal iff (a) is prime iff (a)
is irreducible.

Proof. Let a /∈ Rx. Then the existence of b, c /∈ R× such that a = bc is equivalent to
(b) ) (a) for some b ∈ R \ R×. This is equivalent to (a) ( I ( R, which is equivalent to
(a) not being maximal.

The rest is an exercise.

Theorem 1.2. A PID is a UFD.
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